The Combined Effect of High Hydrostatic Pressure and Mild Heat on Inactivation of Pathogens in Milk and Poultry

Author:

PATTERSON MARGARET F.12,KILPATRICK DAVID J.32

Affiliation:

1. 1Department of Food Science, Newforge Lane, Belfast BT9 5PX, Northern Ireland, UK

2. 3Department of Agriculture for Northern Ireland, Newforge Lane, Belfast BT9 5PX, Northern Ireland, UK

3. 2Department of Biometrics, The Queen's University of Belfast, Newforge Lane, Belfast BT9 5PX, Northern Ireland, UK

Abstract

The combined effects of high hydrostatic pressure and heat on the inactivation of Escherichia coli O157:H7 NCTC 12079 and Staphylococcus aureus NCTC 10652 in poultry meat and ultra-high-temperature-treated (UHT) milk were investigated. The simultaneous application of high pressure and mild heating was more lethal than either treatment alone. The substrate was found to have a significant effect on the survival of the pathogens during treatment. For E. coli O157:H7, a 15-min treatment of 400 MPa at 50°C resulted in approximately a 6.0-log10 reduction in CFU/g in poultry meat and a 5.0-log10 reduction in UHT milk; however, a < 1-log10 reduction was achieved with either treatment alone. In contrast, for S. aureus, a 15-min treatment of 500 MPa at 50°C was required to achieve a 5.0-log10 reduction in poultry meat and a 6.0-log10 reduction in UHT milk. As before, a <1-log10 reduction in numbers was achieved with either treatment alone. The pressure-temperature inactivation curves of each organism, in each substrate, were fitted using the Gompertz equation. Polynomial expressions derived from the Gompertz variables were used to devise simple models which predicted the inactivation of each pathogen at various pressure-temperature combinations. Thus, a number of different pressure-temperature conditions could be chosen to achieve a desired inactivation level. The use of such models will provide flexibility in selecting optimum pressure processing conditions without compromising microbiological safety.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3