Growth of Listeria spp. in Shredded Cabbage Is Enhanced by a Mild Heat Treatment

Author:

ELLS TIMOTHY C.1,HANSEN LISBETH TRUELSTRUP2

Affiliation:

1. 1Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, Kentville, Nova Scotia, Canada B4N 1J5

2. 2Food Science Program, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia, Canada B3J 2X4

Abstract

Mild thermal processing can enhance the shelf life of cut fruits and vegetables by delaying the onset of spoilage and preserving the organoleptic properties of shredded cabbage. However, food safety issues related to this process have not been fully investigated. Therefore, the survival and growth of Listeria spp. on cabbage treated in this manner was examined. Experimentally, 24 strains of Listeria spp. (including L. monocytogenes) were inoculated onto cut and intact cabbage tissues and stored at 5°C. All strains on intact tissues exhibited a moderate decline in numbers (up to 1.0 log CFU/cm2) over the 28-day storage period. Conversely, cut tissue supported growth of most strains during the first 7 to 14 days of incubation with maximum increases of 1.2 log CFU/cm2. Subsequently, the survival or growth on heat-treated (50°C for 3 min) and untreated shredded cabbage of four L. monocytogenes and four nonpathogenic Listeria spp. strains were compared during storage for 21 days at 5°C. Growth on untreated shred for all strains was similar to the results observed on cut tissue with a maximum increase of approximately 1.0 log CFU/g. However, in the heat-treated cabbage shred all strains displayed a rapid increase in growth (up to 2.5 log CFU/g) during the first 7 days of incubation, which may be indicative of the destruction of an endogenous growth-inhibiting compound within the cabbage. In conclusion, this study shows that mild thermal treatments of cut cabbage may promote pathogen growth if other inimical barriers are not implemented downstream of the thermal treatment.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3