Osmotic Dehydration of Apple Slices with CaCl2 and Sucrose Limits Decay Caused by Penicillium expansum, Colletotrichum acutatum, and Botrytis cinerea and Does Not Promote Listeria monocytogenes or Total Aerobic Population Growth

Author:

CHARDONNET CATHERINE O.1,SAMS CARL E.1,CONWAY WILLIAM S.2,DRAUGHON FRANCES A.3,MOUNT JOHN R.3

Affiliation:

1. 1Department of Plant and Soil Sciences, University of Tennessee, Knoxville, Tennessee 37901

2. 2Produce Quality and Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, Maryland 20705

3. 3Department of Food Science and Technology, University of Tennessee, Knoxville, Tennessee 37901, USA

Abstract

The interaction of Penicillium expansum Link, Colletotrichum acutatum, and Botrytis cinerea Pers.:Fr. with Listeria monocytogenes on osmotically dehydrated apple slices was evaluated. In mineral analyses of the slices, the calcium content of the peel and flesh tissues increased by 4- and 11-fold, respectively, when processed in 2% CaCl2. These slices also exhibited less decay by P. expansum, C. acutatum, and B. cinerea. Inoculation of slices with P. expansum resulted in a decrease in the pH of the flesh tissue at the infection site, while the pHs of slices infected with C. acutatum and B. cinerea increased and remained stable, respectively. Total mold population increased in wounds inoculated with P. expansum or C. acutatum. The presence of L. monocytogenes in the wounds did not significantly affect mold growth. The association of P. expansum and L. monocytogenes on apple slices resulted in a decrease in the bacterial population, whereas L. monocytogenes survived when slices were inoculated with C. acutatum. When associated with B. cinerea, there was a fourfold decrease in the L. monocytogenes population when slices were treated with 2% CaCl2. The total aerobic population was not significantly affected by the type of microorganism added to the wounds or by the osmotic treatment. These data show that osmotic dehydration with 2% CaCl2 combined with 20% sucrose limits decay of apple slices and does not promote bacterial or total aerobic population growth.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3