Monitoring of Microbial Hazards at Farms, Slaughterhouses, and Processing Lines of Swine in Korea

Author:

RHO MIN-JEONG1,CHUNG MYUNG-SUB1,LEE JEE-HAE1,PARK JIYONG2

Affiliation:

1. 1Korea Health Industry Development Institute, 57-1 Noryangjin-Dong, Dongjak-Ku, Seoul, Korea 156-050

2. 2Department of Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul, Korea 120-749

Abstract

This study was executed to investigate microbiological hazards at swine farms, slaughterhouses, dressing operations, and local markets for the application of the hazard analysis critical control point system in Korea by analyzing total aerobic plate count (APC) and presence of pathogens. Six integrated pig farms and meat packers were selected from six different provinces, and samples were collected from pig carcasses by swabbing and excision methods at the slaughterhouses, processing rooms, and local markets, respectively. APCs of water in water tanks were relatively low, 1.9 to 3.1 log10 CFU/ml; however, they were increased to 4.6 to 6.9 log10 CFU/ml when sampled from water nipples in the pigpen. APCs of feeds in the feed bins and in the pigpens were 4.4 to 5.4 and 5.2 to 6.7 log10 CFU/g, respectively. Salmonella spp., Staphylococcus aureus, and Clostridium perfringens were detected from water and feed sampled in pigpens and pigpen floors. S. aureus was the most frequently detected pathogenic bacteria in slaughterhouses and processing rooms. Listeria monocytogenes and Yersinia enterocolitica were also detected from the processing rooms of the Kyonggi, Kyongsang, and Cheju provinces. Even though APCs were maintained at the low level of 3.0 log10 CFU/g during slaughtering and processing steps, those of final pork products produced by the same companies showed relatively high numbers when purchased from the local market. These results indicated that the cold chain system for transporting and merchandising of pork products was deficient in Korea. Water supply and feed bins in swine farms and individual operations can be identified as critical control points to reduce microbiological hazards in swine farms, slaughterhouses, and processing plants.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3