Salmonella enterica Biofilm Formation and Density in the Centers for Disease Control and Prevention's Biofilm Reactor Model Is Related to Serovar and Substratum

Author:

CORCORAN M.1,MORRIS D.1,DE LAPPE N.2,O'CONNOR J.2,LALOR P.3,DOCKERY P.3,CORMICAN M.4

Affiliation:

1. 1Antimicrobial Resistance and Microbial Ecology Group, Discipline of Bacteriology, School of Medicine, National University of Ireland, Galway, Ireland

2. 2National Salmonella, Shigella, and Listeria Reference Laboratory, Clinical Science Institute, National University of Ireland, Galway, Ireland

3. 3Discipline of Anatomy, National University of Ireland, Galway, Ireland

4. 4Center for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland

Abstract

Foodborne pathogens can attach to, and survive on, food contact surfaces for long periods by forming a biofilm. Salmonella enterica is the second most common cause of foodborne illness in Ireland. The ability of S. enterica to form a biofilm could contribute to its persistence in food production areas, leading to cross-contamination of products and surfaces. Arising from a large foodborne outbreak of S. enterica serovar Agona associated with a food manufacturing environment, a hypothesis was formulated that the associated Salmonella Agona strain had an enhanced ability to form a biofilm relative to other S. enterica. To investigate this hypothesis, 12 strains of S. enterica, encompassing three S. enterica serovars, were assessed for the ability to form a biofilm on multiple food contact surfaces. All isolates formed a biofilm on the contact surfaces, and there was no consistent trend for the Salmonella Agona outbreak strain to produce a denser biofilm compared with other strains of Salmonella Agona or Salmonella Typhimurium. However, Salmonella Enteritidis biofilm was considerably less dense than Salmonella Typhimurium and Salmonella Agona biofilms. Biofilm density was greater on tile than on concrete, polycarbonate, stainless steel, or glass.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3