Development and Validation of an Extensive Growth and Growth Boundary Model for Listeria monocytogenes in Lightly Preserved and Ready-to-Eat Shrimp

Author:

MEJLHOLM OLE1,DALGAARD PAW1

Affiliation:

1. Seafood and Predictive Microbiology, Aquatic Microbiology and Seafood Hygiene, National Institute of Aquatic Resources (DTU Aqua), Technical University of Denmark, Søltofts Plads, Building 221, DK-2800, Kgs. Lyngby, Denmark

Abstract

An existing cardinal parameter growth and growth boundary model for Listeria monocytogenes (O. Mejlholm and P. Dalgaard, J. Food Prot. 70:70–84 and 2485–2497, 2007) was expanded with terms for the effects of acetic, benzoic, citric, and sorbic acids to include a total of 12 environmental parameters and their interactive effects. The new model predicted growth rates (μmax values) of L. monocytogenes accurately with bias and accuracy factors of 1.0 and 1.5, respectively, for 16 batches of brined shrimp with benzoic, citric, and sorbic acids. Corresponding values of 0.9 and 1.2, respectively, were obtained for five batches of brined shrimp with acetic and lactic acids. Growth and no-growth responses of L. monocytogenes were also appropriately predicted with 88% correct prediction for 26 experiments with brined shrimp. The new model performed better than existing L. monocytogenes models with a comparable degree of complexity. The high number of environmental parameters, including six organic acids (acetic acid, benzoic acid, citric acid, diacetate, lactic acid, and sorbic acid), allows the new model to predict the effect of substituting one set of preserving parameters for another. The new model also allowed the distance between the growth boundary and specific product characteristics to be quantified by a ψ value. This can be of practical importance in the development or reformulation of seafood with preserving parameters that prevent growth of L. monocytogenes and take variability in product characteristics into account.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3