Bacteriostatic Effect of Quercetin as an Antibiotic Alternative In Vivo and Its Antibacterial Mechanism In Vitro

Author:

Wang Shengan1,Yao Jiaying1,Zhou Bo1,Yang Jiaxin1,Chaudry Maria T.1,Wang Mi1,Xiao Fenglin1,Li Yao1,Yin Wenzhe2

Affiliation:

1. Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, People's Republic of China

2. Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province 150086, People's Republic of China

Abstract

ABSTRACT Quercetin, a ubiquitous flavonoid, is known to have antibacterial effects. The purpose of this study was to investigate the effect of quercetin on cecal microbiota of Arbor Acre (AA) broiler chickens in vivo and the bacteriostatic effect and antibacterial mechanism of quercetin in vitro. In vivo, 480 AA broilers (1 day old) were randomly allotted to four treatments (negative control and 0.2, 0.4, or 0.6 g of quercetin per kg of diet) for 42 days. Cecal microbial population and distribution were measured at the end of the experiment. The cecal microflora in these broilers included Proteobacteria, Fimicutes, Bacteroidetes, and Deferribacteres. Compared with the negative control, quercetin significantly decreased the copies of Pseudomonas aeruginosa (P < 0.05), Salmonella enterica serotype Typhimurium (P < 0.01), Staphylococcus aureus (P < 0.01), and Escherichia coli (P < 0.01) but significantly increased the copies of Lactobacillus (P < 0.01), Bifidobacterium (P < 0.01), and total bacteria (P < 0.01). In vitro, we investigated the bacteriostatic effect of quercetin on four kinds of bacteria (E. coli, P. aeruginosa, S. enterica Typhimurium, and S. aureus) and the antibacterial mechanism of quercetin in E. coli and S. aureus. The bacteriostatic effect of quercetin was stronger on gram-positive bacteria than on gram-negative bacteria. Quercetin damaged the cell walls and membranes of E. coli (at 50 × MIC) and S. aureus (at 10 × MIC). Compared with the control, the activity of the extracellular alkaline phosphatase and β-galactosidase and concentrations of soluble protein in E. coli and S. aureus were significantly increased (all P < 0.01), and the activity of ATP in S. aureus was significantly increased (P < 0.01); however, no significant change in ATP activity in E. coli was observed (P > 0.05). These results suggest that quercetin has potential as an alternative antibiotic feed additive in animal production.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3