Survival of Listeria monocytogenes on Fresh Blueberries (Vaccinium corymbosum) Stored under Controlled Atmosphere and Ozone

Author:

CONCHA-MEYER ANIBAL12,EIFERT JOSEPH1,WILLIAMS ROBERT1,MARCY JOSEPH1,WELBAUM GREGORY3

Affiliation:

1. 1Food Science and Technology Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA

2. 2Centro de Estudios en Alimentos Procesados (CEAP), Avenida San Miguel #3425, Talca 3480137, Chile

3. 3Horticulture Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA

Abstract

Listeria monocytogenes is a foodborne pathogen that represents a high risk for consumers because it can grow under refrigeration conditions and can also develop acid tolerance. Fresh blueberries are hand-picked, packed, and transported under refrigeration without receiving a microbial inactivation treatment. The aim of this work was to study the survival of L. monocytogenes in fresh highbush blueberries stored at 4 or 12°C under different controlled atmosphere conditions, including air (control); 5% O2, 15% CO2, 80% N2 (controlled atmosphere storage [CAS]); or ozone gas (O3), 4 ppm at 4°C or 2.5 ppm at 12°C, at high relative humidity (90 to 95%) for a total of 10 days. Fresh blueberries inside a plastic clamshell were spot inoculated with the bacteria and were stored at 4 or 12°C in isolated cabinets under air, CAS, and O3 atmospheric conditions. Samples were evaluated on days 0, 1, 4, 7, and 10 for microbial growth using modified Oxford agar. CAS did not delay or inhibit L. monocytogenes growth in fresh blueberries after 10 days. O3 achieved 3- and 2-log reductions when compared with air treatment at 4 and 12°C, respectively. Low concentrations of O3 together with proper refrigeration temperature can ensure product safety throughout transportation. O3 is a strong antimicrobial that safely decomposes to oxygen and water without leaving residues and can be used as an alternative method to prevent bacterial growth during a long transport period.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3