Affiliation:
1. School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 516 Jungong Road, Shanghai 200093, People's Republic of China
Abstract
ABSTRACT
In predictive microbiology, the study of the microbial lag phase, i.e., the time needed for bacteria to adapt to a new environment before multiplying, has received a great deal of attention in the research literature. The microbial lag phase is more difficult to estimate than the specific growth rate because the lag phase is impacted by the previous and actual growth environments. In this study, the growth of Listeria monocytogenes preincubated at 0, 5, 10, and 15°C and subsequently grown at 25°C was investigated at the single-cell and population levels. The population lag phase of L. monocytogenes was obtained by fitting the Baranyi model, and the single-cell lag time was estimated by the time to detection method. The lag phase at the single-cell and population levels of L. monocytogenes presented a downward trend as the preculture temperature ranged from 0 to 15°C. The population lag phase of L. monocytogenes was lower than the single-cell lag time at the same preculture temperature. In addition, except for the zero-lag distribution at a preculture temperature of 15°C, all the single-cell lag time distributions of L. monocytogenes followed a Weibull distribution under all preculture temperatures. The preculture temperature had a significant impact on the rapid variation in the single-cell lag time distribution. Thus, the influence of preculture temperature on the lag phase needs to be quantitatively analyzed for better assessment of microbiological risk.
HIGHLIGHTS
Publisher
International Association for Food Protection
Subject
Microbiology,Food Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献