Influence of Varying Pre-Culture Conditions on the Level of Population Heterogeneity in Batch Cultures with an Escherichia coli Triple Reporter Strain

Author:

Hoang Manh Dat1ORCID,Riessner Sophi1,Oropeza Vargas Jose Enrique1,von den Eichen Nikolas1,Heins Anna-Lena1

Affiliation:

1. Chair of Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany

Abstract

When targeting robust, high-yielding bioprocesses, phenomena such as population heterogeneity have to be considered. Therefore, the influence of the conditions which the cells experience prior to the main culture should also be evaluated. Here, the influence of a pre-culture medium (complex vs. minimal medium), optical density for inoculation of the main culture (0.005, 0.02 and 0.0125) and harvest time points of the pre-culture in exponential growth phase (early, mid and late) on the level of population heterogeneity in batch cultures of the Escherichia coli triple reporter strain G7BL21(DE3) in stirred-tank bioreactors was studied. This strain allows monitoring the growth (rrnB-EmGFP), general stress response (rpoS-mStrawberry) and oxygen limitation (nar-TagRFP657) of single cells through the expression of fluorescent proteins. Data from batch cultivations with varying pre-culture conditions were analysed with principal component analysis. According to fluorescence data, the pre-culture medium had the largest impact on population heterogeneities during the bioprocess. While a minimal medium as a pre-culture medium elevated the differences in cellular growth behaviour in the subsequent batch process, a complex medium increased the general stress response and led to a higher population heterogeneity. The latter was promoted by an early harvest of the cells with low inoculation density. Seemingly, nar-operon expression acted independently of the pre-culture conditions.

Funder

German Research Foundation

German Ministry of Education and Research

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3