Affiliation:
1. Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716; and
2. U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA
Abstract
ABSTRACT
Cilantro was recently identified as a vehicle for protozoan illness. Current postharvest practices are not sufficient to inactivate protozoa on cilantro. Cold plasma is an emerging nonthermal waterless technology with potential applications in food processing that are currently being investigated to enhance the safety of herbs. The purpose of this study was to determine the impact of cold atmospheric plasma (CP) on the viability of Cryptosporidium parvum oocysts on cilantro. C. parvum oocysts were inoculated onto cilantro and treated with a CP jet for 0, 30, 90, and 180 s at a working distance of 10 cm with a flow of 1.42 × 10−3 m3/s. Oocyst viability was determined using HCT-8 cell culture infectivity assays. Overall, each treatment significantly reduced oocyst infectivity compared with the 0-s treatment control (P ≤ 0.02). Log inactivations of oocysts observed on cilantro were 0.84, 1.23, and 2.03 for the 30-, 90-, and 180-s treatment times, respectively. Drying and darkening of cilantro leaves was observed with treatments longer than 30 s. CP can reduce C. parvum infectivity on cilantro. With further research and optimization, this treatment technology has potential applications in postharvest processing of cilantro.
HIGHLIGHTS
Publisher
International Association for Food Protection
Subject
Microbiology,Food Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献