Quantities of Adenylate Homologues (ATP+ADP+AMP) Change over Time in Prokaryotic and Eukaryotic Cells

Author:

SMITH N. W.1,SINDELAR J. J.2,RANKIN S. A.1

Affiliation:

1. Department of Food Science

2. Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA

Abstract

ABSTRACT Rapid assays for the assessment of the hygienic state of surfaces in food and medical industries include the use of technologies designed to detect the presence of the metabolite ATP. ATP is a critical metabolite and energy source for most living organisms; therefore, the presence of ATP can be an indicator of surface hygiene based on the presence of soil or food residues associated with inadequate cleaning. The concentrations of ATP vary based on an organism's metabolic state, thus potentially influencing the sensitivity of ATP-based assays. However, little has been published detailing the quantitative changes of ATP to the adenylate homologues ADP and AMP nor the quantitative and cumulative fate of these homologues over time as the metabolic state remains in flux. The objective of this study was to quantify the individual and cumulative (AXP) concentrations of these three adenylate homologues over defined time periods in selected eukaryotic tissue and prokaryotic cell cultures of significance to hygiene. ATP concentrations differed substantially across these selected variables of time and source. The 1- to 3-log reductions in ATP concentrations over time were highly affected by organism type. In general, ADP became the predominate adenylate in eukaryotic tissue, and AMP was the predominate adenylate in the prokaryotic cells at later time points in each study. Total AXP concentrations dropped in general, reflective primarily of the loss of ATP. The results of ATP-based techniques for hygiene surveillance will vary as a function of the amount of cellular material present and the metabolic state of such material. HIGHLIGHTS

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3