Development of a Novel Hygiene Monitoring System Based on the Detection of Total Adenylate (ATP+ADP+AMP)

Author:

BAKKE MIKIO1,SUZUKI SHIGEYA2

Affiliation:

1. Kikkoman Biochemifa Company, Planning & Development Department, 376-2 Kamihanawa, Noda, Chiba 278-0033, Japan; and

2. Kikkoman Corporation, Research & Development Division, 399 Noda, Noda, Chiba 278-0037, Japan

Abstract

ABSTRACT ATP is the universal energy molecule found in animals, plants, and microorganisms. ATP rapid hygiene monitoring tests have been employed in the food industry to ensure that adequate cleanliness is being maintained. However, because ATP is hydrolyzed to ADP and AMP by metabolic processes, by heat treatment, or under acidic or alkaline conditions, total adenylate (ATP+ADP+AMP [A3]) could be a more reliable sanitation indicator of food residues that may cause biofilm formation and allergen contamination. Therefore, a novel hygiene monitoring system to measure A3 was developed based on the luciferin-luciferase assay with the combination of two enzymes, pyruvate kinase and pyruvate phosphate dikinase, that can convert ADP into ATP and recycle AMP into ATP, respectively. The newly developed A3 assay system afforded stable bioluminescence signals and equivalent linear calibration curves between relative light units (RLU) and the amounts of ATP, ADP, and AMP, respectively. To verify the significance of the A3 method, the ratios of ATP, ADP, and AMP in various food samples were determined; large amounts of ADP and AMP were found in a variety of foods, such as meat, seafood, dairy, nuts, fruits, vegetables, and fermented foods. Sanitation monitoring of stainless steel exposed to raw meat was also examined, and the A3 method achieved a 200-RLU level, the typical benchmark value, after complete washing with detergent and rinsing. In contrast, a conventional ATP method showed less than 200 RLU after only a light cold and hot water rinse. In conclusion, the A3 assay appeared to be suitable for detection of adenylates from food residues that are not detected by the conventional ATP assay.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3