Development of an Effective Two-Step Enrichment Process to Enhance Bax System Detection of Healthy and Injured Salmonella Enteritidis in Liquid Whole Egg and Egg Yolk

Author:

HUANG SHISHI1,HUI TAY BOON2,YUK HYUN-GYUN3,ZHENG QIANWANG1

Affiliation:

1. Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, People's Republic of China

2. Hygiena Singapore Pte Ltd., 80 Robinson Road #02-00, Singapore 068898

3. Department of Food Science and Technology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong-gun, Chungbuk 27909, Republic of Korea

Abstract

ABSTRACT The BAX system for pathogen detection has been highly accurate in a variety of food products. However, false-negative results have been reported for the detection of pathogens in liquid egg products because of failed pathogen resuscitation and the existence of inhibitory components. In this study, a short-time enrichment step was used to simultaneously resuscitate the target cells to the detection level and to dilute the inhibitory components to reduce detection interference. The MP medium (BAX system) enabled faster multiplication of healthy Salmonella cells than did buffered peptone water (BPW) in tested liquid whole egg and egg yolk. However, MP failed to resuscitate heat-injured cells even after 24 h of incubation. Therefore, MP was replaced with BPW as the enrichment broth for the BAX system. However, the use of BPW for a one-step enrichment was not effective for removal of PCR inhibitors in egg yolk, and unstable detection results were obtained. To improve detection accuracy, a second step of enrichment with brain heart infusion was added. This two-step enrichment process shortened the enrichment time to 14 h and greatly increased the number of samples in which the pathogen was detected during the same enrichment time, especially in the liquid egg yolk samples. The validation study revealed 100% diagnostic accuracy of the two-step enrichment process plus the BAX system. These results indicate that a two-step enrichment process added to the BAX system can improve the detection of pathogenic Salmonella in liquid egg products. HIGHLIGHTS

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3