Decay of Dinitroaniline Herbicides and Organophosphorus Insecticides during Brewing of Lager Beer

Author:

NAVARRO SIMÓN1,PÉREZ GABRIEL1,NAVARRO GINÉS1,MENA LUIS1,VELA NURIA1

Affiliation:

1. Department of Agricultural Chemistry, Geology and Pedology, School of Chemistry, University of Murcia, Campus Universitario de Espinardo, E-30100 Murcia, Spain

Abstract

This article examines the fate of four pesticides that can be present during the brewing of lager beer. For this purpose, malted barley was spiked at 2 mg/kg with pendimethalin and trifluralin (dinitroaniline herbicides) and fenitrothion and malathion (organophosphorus insecticides). Analyses of pesticide residues were carried out by a gas chromatograph with an electron capture detector, and their identity was confirmed by gas chromatography–mass spectrometry. Cleanup was necessary for the malt and spent grain samples. Beginning with mashing and ending with the final product 4 months later, various samples (spent grain, sweet wort, brewer wort, and beer) were taken to determine the concentration of the targeted residual pesticides during the various beer making phases. In all cases, the residual levels recorded in sweet wort sampled after the mashing phase were below the respective maximum residue limits established by Spanish legislation for barley. Significant proportions of pesticide residues (17 to 40%) were retained on the spent grain. Applying the standard first-order kinetics equation (r > 0.91), the half-lives obtained for the four compounds during the storage of the spent grain (3.5 months) varied from 138 days (fenitrothion) to 192 days (malathion and pendimethalin). Herbicide residues practically disappeared (<0.3%) after wort boiling, whereas the percentages of the remaining insecticides, fenitrothion and malathion, ranged from 3.5 to 4.3%, respectively, at this time. No residues of dinitroaniline compounds were detected in young beer, whereas there was a significant reduction in fenitrothion (58%) and malathion (71%) residues during fermentation. Lagering and filtering processes also reduced the content of the organophosphorus insecticides (33 to 37%). Finally, after the storage period (3 months), the content of fenitrothion was reduced by 75%, with malathion residues being below its detection limit.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Reference27 articles.

1. Bamforth, C. W., and A. H. P. Barclay. 1993. Malting technology and the uses of malt, p.297-354. In A. W. MacGregor and S. R. Bhatty (ed.), Barley: chemistry and technology.American Association of Cereal Chemists, Inc., St. Paul, Minn.

2. Beer without pesticides.

3. Effect of beer drinking on risk of myocardial infarction: population based case-control study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3