Reduction of Escherichia coli O157:H7 and Salmonella Typhimurium on Beef Carcass Surfaces Using Acidified Sodium Chlorite

Author:

CASTILLO A.1,LUCIA L. M.1,KEMP G. K.2,ACUFF G. R.1

Affiliation:

1. 1Texas Agricultural Experiment Station, Center for Food Safety, Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471

2. 2Alcide Corporation, Redmond, Washington 98052, USA

Abstract

The efficacy of a phosphoric acid–activated acidified sodium chloride (PASC) spray and a citric acid–activated acidified sodium chlorite (CASC) spray applied at room temperature (22.4 to 24.7°C) in combination with a water wash was compared with that of a water wash only treatment for reduction of Escherichia coli O157:H7 and Salmonella Typhimurium inoculated onto various hot-boned individual beef carcass surface regions (inside round, outside round, brisket, flank, and clod). Initial counts of 5.5 and 5.4 log CFU/cm2 were obtained after inoculation with E. coli O157:H7 and Salmonella Typhimurium, respectively. Initial numbers for both pathogens were reduced by 3.8 to 3.9 log cycles by water wash followed by PASC spray and by 4.5 to 4.6 log cycles by water wash followed by CASC spray. The sprays consisted of applying 140 ml of the appropriate sanitizing solution for 10 s at 69 kPa. Corresponding reduction values obtained by water wash alone were 2.3 log. The performance of CASC appeared to be consistently better than that of PASC. In general, no effect of the carcass surface region was observed on the log reductions for either pathogen, except for the inside round, which consistently had lower reductions. Both PASC and CASC were capable of effectively reducing pathogens spread to areas beyond the initial contaminated area of the cuts to levels close to or below the counting method detection limit (0.5 log CFU/cm2). However, 30 to 50% of the carcasses treated by these antimicrobial solutions still yielded countable colonies. Results of this study indicate that acidified sodium chlorite sprays are effective for decontaminating beef carcass surfaces.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3