Elucidation of composition of chlorine compounds in acidic sodium chlorite solution using ion chromatography

Author:

Kishimoto Ayuta,Ohtsubo Ryosuke,Okada Yuta,Sugiyama Kenta,Goda Hisataka,Yoshikawa Toshikazu,Kohno Masahiro,Fukui KojiORCID

Abstract

With the spread of coronavirus infections, the demand for disinfectants, such as a sodium chlorite solution, has increased worldwide. Sodium chlorite solution is a food additive and is used in a wide range of applications. There is evidence that chlorous acid or sodium chlorite is effective against various bacteria, but the actual mechanism is not well understood. One reason for this is that the composition of chlorine-based compounds contained in sodium chlorite solutions has not been clearly elucidated. The composition can vary greatly with pH. In addition, the conventional iodometric titration method, the N,N-diethyl-p-phenylenediamine sulfate (DPD) method and the absorption photometric method cannot clarify the composition. In this study, we attempted to elucidate the composition of a sodium chlorite solution using absorption spectrophotometry and ion chromatography (IC). IC is excellent for qualitative and quantitative analysis of trace ions. Through this, we aimed to develop an evaluation method that allows anyone to easily determine the bactericidal power of sodium chlorite. We found that commercially available sodium chlorite solution is 80% pure, with the remaining 20% potentially containing sodium hypochlorite solution. In addition, when sodium chlorite solution became acidified, its absorption spectrum exhibited a peak at 365 nm. Sodium chlorite solution is normally alkaline, and it cannot be measured by the DPD method, which is only applicable under acidic conditions. The presence of a peak at 365 nm indicates that the acidic sodium chlorite solution contains species with oxidizing power. On the other hand, the IC analysis showed a gradual decrease in chlorite ions in the acidic sodium chlorite solution. These results indicate that chlorite ions may not react with this DPD reagent, and other oxidizing species may be present in the acidic sodium chlorite solution. In summary, when a sodium chlorite solution becomes acidic, chlorine-based oxidizing species produce an absorption peak at 365 nm. Sodium hypochlorite and sodium chlorite solutions have completely different IC peak profiles. Although there are still many problems to be solved, we believe that the use of IC will facilitate the elucidation of the composition of sodium chlorite solution and its sterilization mechanism.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3