Influence of Temperature, Glucose, and Iron on Sinigrin Degradation by Salmonella and Listeria monocytogenes

Author:

OLAIMAT AMIN N.1,SOBHI BABAK1,HOLLEY RICHARD A.1

Affiliation:

1. Department of Food Science, Faculty of Agriculture and Food Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

Abstract

Factors, including pH, temperature, glucose concentration, and iron compounds, affect the activity of plant myrosinase and, consequently, endogenous glucosinolate degradation. These factors also may affect glucosinolate degradation by bacterial myrosinase. Therefore, this study examined the effect of temperature (4 to 21°C), glucose (0.05 to 1.0%), and iron (10 mM ferrous or ferric) on sinigrin degradation by Salmonella or Listeria monocytogenes cocktails in Mueller-Hinton broth and the effect of sinigrin degradation on bacterial viability. The degradation of sinigrin by both pathogens increased with higher temperatures (21 > 10 > 4°C). Salmonella and L. monocytogenes cocktails hydrolyzed 59.1 and 53.2% of sinigrin, respectively, at 21°C up to 21 days. Both iron compounds significantly enhanced sinigrin degradation by the pathogens. On day 7, sinigrin was not detected when the Salmonella cocktail was cultured with ferrous iron or when the L. monocytogenes cocktail was cultured in Mueller-Hinton broth containing ferric iron. In contrast, ferric and ferrous iron inhibited the activity of 0.002 U/ml myrosinase from white mustard by 63 and 35%, respectively, on day 1. Salmonella and L. monocytogenes cocktails were able to degrade >80% of sinigrin at 0.05 and 0.1% glucose; however, 0.25 to 1.0% glucose significantly reduced sinigrin degradation. Although both pathogens significantly degraded sinigrin, the allyl isothiocyanate (AITC) recoverable was ≤6.2 ppm, which is not inhibitory to Salmonella or L. monocytogenes. It is probable that the gradual hydrolysis of sinigrin to form AITC either did not produce an inhibitory level of AITC or the AITC formed was unstable in the aqueous medium and rapidly decomposed to new compounds that were less bactericidal against the pathogens.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3