Reduction of Salmonella by Two Commercial Egg White Pasteurization Methods

Author:

ROBERTSON W. R.1,MURIANA P. M.1

Affiliation:

1. Department of Animal Science and The Food and Agricultural Products Research and Technology Center, Oklahoma State University, Stillwater, Oklahoma 74078, USA

Abstract

The effect of pH, processing temperatures, and preheating steps in two commercial egg white pasteurization procedures (Armour and Standard Brands methods) were evaluated using a five-strain cocktail of Salmonella. We devised a benchtop pasteurization system that would more closely resemble the two commercial processes than could the traditional capillary tube method. The pasteurization methods both require hydrogen peroxide to be metered into the egg white stream between a required initial preheat step and the main heating regimen. Both processes were evaluated at three pH levels (pH 8.2, 8.6, 9.0), at four temperatures (51.7°C/125°F, 53.1°C/127.5°F, 54.4°C/130°F, 55.8°C/132.5°F), and over four residence times to allow calculation of D-values at each temperature. When compared at the minimum allowable time and temperatures for each process, our results showed at least a 1-log greater log reduction (P < 0.05) for the Standard Brands method than the Armour method in 10 of 12 of the pH and temperature combinations tested. Almost all runs at any given temperature showed more reduction at pH 9.0 than at pH 8.2 except for the Standard Brands method at 54.4°C and 55.8°C, which showed the most consistent reduction across all three pH levels tested. Analysis of the preheat portion of the two methods showed that there was no contribution (P > 0.05) toward Salmonella reduction when compared with the identical process without the preheating step. We generally observed a greater reduction of Salmonella with egg white at pH 9.0 that is typical of older, off-line processing than with low pH egg white (i.e., 8.2) that is typical of modern in-line processing facilities. This difference was as much as 3.5 log cycles depending on the processing conditions. The data has been used to make recommendations for minimum processing conditions for hydrogen peroxide–based egg white pasteurization.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3