Influence of Several Methodological Factors on the Growth of Clostridium perfringens in Cooling Rate Challenge Studies

Author:

SMITH SARAH1,JUNEJA VIJAY2,SCHAFFNER DONALD W.1

Affiliation:

1. 1Food Risk Analysis Initiative, 65 Dudley Road, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901-8520

2. 2U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA

Abstract

Proper temperature control is essential in preventing Clostridium perfringens food poisoning. The U.S. Department of Agriculture Food Safety and Inspection Service cooling guidelines offer two options for the cooling of meat products: follow a standard time-temperature schedule or validate that alternative cooling regimens result in no more than a 1-log CFU/g increase of C. perfringens and no growth of Clostridium botulinum. The latter option requires laboratory challenge studies to validate the efficacy of a given cooling process. Accordingly, the objective of this study was to investigate the role of several methodological variables that might be encountered during typical C. perfringens challenge studies. Variables studied included plastic bag type (Whirlpak or Spiral Biotech), sealing method (Multivac or FoodSaver), initial spore inoculum size (1 to approximately 3 log CFU/g), and growth environment (ground beef or Trypticase–peptone–glucose–yeast extract [TPGY] broth). The major factors that affected growth were sample bag type and growth environment. Samples incubated in Whirlpak bags showed significantly less growth than those incubated in Spiral Biotech bags, which was likely due to the former bag's greater oxygen permeability. C. perfringens spores showed shorter germination, outgrowth, and lag times and C. perfringens cells showed faster growth rates in ground beef compared with TPGY broth. No significant difference was observed between two different sealing methods. Initial spore inoculum levels in the range studied had no significant effect on final C. perfringens cell concentration.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3