Lethality of Commercial Whole-Muscle Beef Jerky Manufacturing Processes against Salmonella Serovars and Escherichia coli O157:H7

Author:

BUEGE DENNIS R.1,SEARLS GINA1,INGHAM STEVEN C.2

Affiliation:

1. 1Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA

2. 2Department of Food Science, University of Wisconsin, Madison, Wisconsin 53706, USA

Abstract

Thermal processes used in making whole-muscle beef jerky include a drying step, which may result in enhanced pathogen thermotolerance and evaporative cooling that reduce process lethality. Several salmonellosis outbreaks have been associated with beef jerky. In this study, a standardized process was used to inoculate beef strips with five-strain cocktails of either Salmonella serovars or Escherichia coli O157:H7, to marinate the strips at pH 5.3 for 22 to 24 h at 5°C, and to convert the strips to jerky using various heating and drying regimes. Numbers of surviving organisms were determined during and after heating and drying. Salmonella reductions of ≥6.4 log CFU and similar reductions in E. coli O157:H7 were best achieved by ensuring that high wet-bulb temperatures were reached and maintained early in the process (51.7 or 54.4°C for 60 min, 57.2°C for 30 min, or 60°C for 10 min) followed by drying at 76.7°C (dry-bulb temperature). Processes with less lethality that reduced counts of both pathogens by ≥5.0 log CFU were (i) heating and drying at 76.7°C (dry bulb) within 90 min of beginning the process, (ii) heating for successive hourly intervals at 48.9, 54.4, 60, and 76.7°C (dry bulb), and (iii) heating at 51.7°C (dry bulb) and then drying at 76.7°C (dry bulb), starting before the product water activity dropped below 0.86. In several trials, separate beef strips were inoculated with a commercial Pediococcus acidilactici starter culture as a potential surrogate for evaluating pathogen thermotolerance. The results of these trials suggested that this experimental approach may be useful for in-plant validation of process lethality.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3