Exploratory Study of the Application of Smoke Aerosols to Manure-Based Composting Materials To Reduce Prevalence of Salmonella

Author:

ERICKSON MARILYN C.1,LIAO JYE-YIN1

Affiliation:

1. Center for Food Safety and Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797, USA

Abstract

ABSTRACT During the early stages of aerobic composting, heat is generated and when the materials are self-insulating, extended exposure of pathogens to this heat source will lead to significant reduction, if not elimination, of the pathogens. However, when insufficient heat is applied to the composting materials, pathogens may survive. Under those conditions if the compost had contained material of animal origin or food waste, it would be considered untreated and would not be allowed in fields growing crops that may be consumed raw. However, alternative treatment processes are allowed, provided they are validated to meet the microbial standards stipulated in the Produce Safety final rule of the Food Safety Modernization Act and that the physical parameters of the process are documented to ensure that the conditions under which the process was validated have been met. Hence, this exploratory study was undertaken in a laboratory setting to determine the potential for application of aerosolized smoke to inactivate Salmonella in manure-based compost. Smoke generated from wood chips (oak or pecan) and introduced to the headspace of contaminated cow manure compost (≤3 log CFU/g) in sealed containers (35 g per container) resulted in no Salmonella detected by enrichment culture in 100% (0 of 14) of the samples after 18 to 48 h of exposure, whereas Salmonella in control samples remained at initial levels over the same time period. Shorter exposure times (6 h) to the smoke aerosols were less effective (11 of 24 samples positive by enrichment culture), and additional flushes with the wood smoke during this time failed to decrease the prevalence of contamination. Smoke aerosols generated from waste agricultural materials and held in containers with Salmonella-contaminated compost for 18 h significantly reduced the prevalence of the pathogen in samples compared with control samples (P < 0.05). The odds of not finding Salmonella in smoke-exposed compost were 14 (pine needles and rice hulls), 23 (cocoa hulls, orange rind, and peanut hulls), and 28 (sunflower hulls) times greater compared with samples not exposed to smoke. Many other variables remain to be examined (e.g., compost composition, compost maturity, and anaerobic conditions) to determine whether this approach could be universally applied to manure-based compost. Validation under field conditions will be required and may entail use of this approach in combination with suboptimal thermal conditions (<55°C).

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Reference27 articles.

1. Synthesis, spectroscopy and antimicrobial activity of iron complexes of some smoke flavour compounds;Arumugam;Nat. Prod. Res,2012

2. Antimicrobial activity of smoke from different woods;Asita;Lett. Appl. Microbiol,1990

3. Inhibition of spoilage and pathogenic microorganisms by liquid smoke from various woods;Boyle;Lebensm-Wiss. Technol,1988

4. Thermal inactivation of desiccation-adapted Salmonella spp. in aged chicken litter;Chen;Appl. Environ. Microbiol,2013

5. Karrikins: a new family of plant growth regulators in smoke;Chiwocha;Plant Sci,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3