Affiliation:
1. Department of Animal and Dairy Sciences (ORCID: http://orcid.org/0000-0002-1376-5059 [J.M.F.]),
2. Department of Biochemistry and Molecular Biology and Entomology and Plant Pathology, and
3. Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi 39762, USA
Abstract
ABSTRACT
Foodborne bacteria such as Escherichia coli O157:H7 can cause severe hemorrhagic colitis in humans following consumption of contaminated meat products. Contamination with pathogenic bacteria is frequently found in the food production environment, and adequate household storage conditions of purchased foods are vital for illness avoidance. Real-time monitoring was used to evaluate bacterial growth in ground horse, beef, and pork meats maintained under various storage conditions. Various levels of E. coli O157:H7 carrying the luxCDABE operon, which allows the cells to emit bioluminescence, were used to inoculate meat samples that were then stored at room temperature for 0.5 day, at 4°C (cold) for 7 or 9 days, or −20°C (frozen) for 9 days. Real-time bioluminescence imaging (BLI) of bacterial growth was used to assess bacterial survival or load. Ground horse meat BLI signals and E. coli levels were dose and time dependent, increasing during room temperature and −20°C storage, but stayed at low levels during 4°C storage. No bacteria survived in the lower level inoculum groups (101 and 103 CFU/g). With an inoculum of 107 CFU/g, pork meats had higher BLI signals than did their beef counterparts, displaying decreased BLI signals during 7 days storage at 4°C. Both meat types had higher BLI signals in the fat area, which was confirmed with isolated fat tissues in the beef meat. Beef lean and fat tissues contrasted with both pork fat and lean tissues, which had significantly higher BLI signals and bacterial levels. BLI appears to be a useful research tool for real-time monitoring of bacterial growth and survival in various stored livestock meats. The dependence of E. coli O157:H7 growth on meat substrate (fat or lean) and storage conditions may be used as part of an effective antibacterial approach for the production of safe ground horse, beef, and pork meats.
Publisher
International Association for Food Protection
Subject
Microbiology,Food Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献