Prediction of Talc Content in Wheat Flour Based on a Near-Infrared Spectroscopy Technique

Author:

LIU YI1,SUN LAIJUN1,RAN ZHIYONG1,PAN XUYANG1,ZHOU SHUANG1,LIU SHUANGCAI1

Affiliation:

1. Key Laboratory of Electronics Engineering, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, People's Republic of China

Abstract

ABSTRACT A procedure for the prediction of talc content in wheat flour based on radial basis function (RBF) neural network and near-infrared spectroscopy (NIRS) data is described. In this study, 41 wheat flour samples adulterated with different concentrations of talc were used. The diffuse reflectance spectra of all samples were collected by NIRS analyzer in the spectral range of 400 to 2,500 nm. A sample of outliers was eliminated by Mahalanobis distance based on near-infrared spectral scanning, and the remaining 40 wheat flour samples were used for spectral characteristic analysis. A calibration set of 26 samples and a prediction set of 14 samples of wheat flour were built as a result of sample set partitioning based on joint x–y distances division. A comparison of Savitzky-Golay smoothing, multiplicative scatter correction (MSC), first derivation, second derivation, and standard normal variation in the modeling showed that MSC has the best preprocessing effect. To develop a simpler, more efficient prediction model, the correlation coefficient method (CCM) was used to reduce spectral redundancy and determine the maximum correlation informative wavelength (MIW). From the full 1,050 wavelengths, 59 individual MIWs were finally selected. The optimal combined detection model was CCM-MSC-RBF based on the selected MIWs, with a determination of prediction coefficients of prediction (Rp) of 0.9999, root-mean-square error of prediction of 0.0765, and residual predictive deviation of 65.0909. The study serves as a proof of concept that NIRS technology combined with multivariate analysis has the potential to provide a fast, nondestructive and reliable assay for the prediction of talc content in wheat flour.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3