Microflora Assessments Using PCR–Denaturing Gradient Gel Electrophoresis of Ozone-Treated and Modified-Atmosphere-Packaged Farmed Cod Fillets

Author:

HOVDA MARIA BEFRING12,SIVERTSVIK MORTEN1,LUNESTAD BJØRN TORE3,ROSNES JAN THOMAS1

Affiliation:

1. 1Norconserv AS, Seafood Processing Research, P.O. Box 327, N-4002 Stavanger, Norway

2. 2Department of Biology, University of Bergen, Jahnebakken 5, N-5020 Bergen, Norway

3. 3National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N-5817 Bergen, Norway

Abstract

Denaturing gradient gel electrophoresis (DGGE) of a PCR-amplified 16S rDNA sequence was used to characterize changes in the microbial flora caused by ozone (O3) treatment of farmed cod (Gadus morhua). Portions of cod were produced under controlled conditions, bathed in fresh water supplemented with 2 ppm of O3 for 30 min, and packaged in modified atmosphere (MA: 60% CO2 and 40% N2) before 4°C storage. Control samples were packaged in MA or air, without prior O3 treatment. Samples were analyzed by PCR-DGGE to determine the predominant bacterial flora and to examine possible differences in the microbial community due to O3 treatment. The DGGE analysis during the storage period showed that the O3 treatment produced no significant difference in the microbial flora compared with the controls. Sequencing of 16S rDNA detected the specific spoilage bacteria Photobacterium phosphoreum, Pseudomonas spp., Shewanella baltica, and Shewanella putrefaciens as the predominant bacteria in all samples. PCR-DGGE results were supported by culture and sensory analyses used in predicting product shelf life. Aerobic plate count, H2S-producing bacteria, and psychrotrophic bacterial counts demonstrated no significant extension of the shelf life of MA-packaged, O3-treated cod fillets.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3