A Maize Lectin-Like Protein with Antifungal Activity against Aspergillus flavus

Author:

BAKER R. L.1,BROWN R. L.2,CHEN Z.-Y.3,CLEVELAND T. E.2,FAKHOURY A. M.1

Affiliation:

1. 1Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, Illinois 62901

2. 2U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana 70179

3. 3Department of Plant Pathology and Crop Physiology, Louisiana State University, Agricultural Center, Baton Rouge, Louisiana 70803, USA

Abstract

The filamentous fungus Aspergillus flavus causes an ear rot on maize and produces a mycotoxin (aflatoxin) in colonized maize kernels. Aflatoxins are carcinogenic to humans and animals upon ingestion. Aflatoxin contamination results in a large loss of profits and marketable yields for farmers each year. Several research groups have worked to pinpoint sources of resistance to A. flavus and the resulting aflatoxin contamination in maize. Some maize genotypes exhibit greater resistance than others. A proteomics approach has recently been used to identify endogenous maize proteins that may be associated with resistance to the fungus. Research has been conducted on cloning, expression, and partial characterization of one such protein, which has a sequence similar to that of cold-regulated proteins. The expressed protein, ZmCORp, exhibited lectin-like hem-agglutination activity against fungal conidia and sheep erythrocytes. Quantitative real-time PCR assays revealed that ZmCOR is expressed 50% more in maize kernels from the Mp420 line, a type of maize resistant to A. flavus, compared with the expression level of the gene in the susceptible B73 line. ZmCORp exhibited fungistatic activity when conidia from A. flavus were exposed to the protein at a final concentration of 18 mM. ZmCORp inhibited the germination of conidia by 80%. A 50% decrease in mycelial growth resulted when germinated conidia were incubated with the protein. The partial characterization of ZmCORp suggests that this protein may play an important role in enhancing kernel resistance to A. flavus infection and aflatoxin accumulation.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3