Neural Network Model for Thermal Inactivation of Salmonella Typhimurium to Elimination in Ground Chicken: Acquisition of Data by Whole Sample Enrichment, Miniature Most-Probable-Number Method

Author:

OSCAR T. P.1

Affiliation:

1. U.S. Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit, Room 2111, Center for Food Science and Technology, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, USA

Abstract

ABSTRACT Predictive models are valuable tools for assessing food safety. Existing thermal inactivation models for Salmonella and ground chicken do not provide predictions above 71°C, which is below the recommended final cooked temperature of 73.9°C for chicken. They also do not predict when all Salmonella are eliminated without extrapolating beyond the data used to develop them. Thus, a study was undertaken to develop a model for thermal inactivation of Salmonella to elimination in ground chicken at temperatures above those of existing models. Ground chicken thigh portions (0.76 cm3) in microcentrifuge tubes were inoculated with 4.45 ± 0.25 log most probable number (MPN) of a single strain of Salmonella Typhimurium (chicken isolate). They were cooked at 50 to 100°C in 2 or 2.5°C increments in a heating block that simulated two-sided pan frying. A whole sample enrichment, miniature MPN (WSE-mMPN) method was used for enumeration. The lower limit of detection was one Salmonella cell per portion. MPN data were used to develop a multiple-layer feedforward neural network model. Model performance was evaluated using the acceptable prediction zone (APZ) method. The proportion of residuals in an APZ (pAPZ) from −1 log (fail-safe) to 0.5 log (fail-dangerous) was 0.911 (379 of 416) for dependent data and 0.910 (162 of 178) for independent data for interpolation. A pAPZ ≥0.7 indicated that model predictions had acceptable bias and accuracy. There were no local prediction problems because pAPZ for individual thermal inactivation curves ranged from 0.813 to 1.000. Independent data for interpolation satisfied the test data criteria of the APZ method. Thus, the model was successfully validated. Predicted times for a 1-log reduction ranged from 9.6 min at 56°C to 0.71 min at 100°C. Predicted times for elimination ranged from 8.6 min at 60°C to 1.4 min at 100°C. The model will be a valuable new tool for predicting and managing this important risk to public health.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3