Effect of Preservatives on Shiga Toxigenic Phages and Shiga Toxin of Escherichia coli O157:H7

Author:

SUBILS TOMÁS1,AQUILI VIRGINIA1,EBNER GUILLERMO1,BALAGUÉ CLAUDIA1

Affiliation:

1. Área Bacteriología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 S2002LRK, Rosario, Santa Fe, Argentina

Abstract

Toxin synthesis by Shiga toxin–producing Escherichia coli (STEC) appears to be coregulated through the induction of the integrated bacteriophages that encode the toxin genes. These phages might be the principal means for the dissemination and release of Shiga toxins. We evaluated the effect of three common food preservatives, potassium sorbate, sodium benzoate, and sodium propionate, on the propagation of the phages and Shiga toxins. We tested each preservative at four concentrations, 1, 1.25, 2.5, and 5 mg/ml, both on free phages and on lysogenic phages in bacteria. We also evaluated the expression of a lambdoid phage, which was exposed to increasing concentrations of preservatives, by measuring β-galactosidase activity from SPC105, a transductant strain. Furthermore, we tested the effect of the preservatives on cytotoxigenic activity of Shiga toxin on Vero cells. We detected an increase of the inhibitory effect of the phage lytic activity, both in lysogenic and free phages, as the preservative concentration increased. However, the inhibition was higher on the lysogenic phages release than on free phages. Sodium benzoate and potassium sorbate were about equal at inhibiting phages; they were more effective than sodium propionate. A significant decrease of lacZ expression, encoded in a lambda phage, was observed. We also found a reduction in Shiga toxin titer caused by exposure of E. coli O157:H7 to 5 mg/ml sodium benzoate or potassium sorbate. These results imply that these three preservatives, used to inhibit microbial spoilage of foods, also act to inhibit lytic activity and dispersion of a phage carrying the gene encoding powerful Shiga cytotoxins. Also notable was the inactivation of Shiga toxin activity, although this effect was detected using concentrations of preservatives greater than those allowed by the Argentine Food Code.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3