Reducing Pathogenic Escherichia coli Surrogates on Fresh Beef Cuts by Water-Reducing Antimicrobial Interventions

Author:

DANIELS KOURTNEY A.1,MODROW KATHERINE2,OSBURN WESLEY N.2,TAYLOR T. MATTHEW23

Affiliation:

1. Department of Food Science and Technology, Texas A&M AgriLife, College Station, Texas 77843-2253

2. Department of Animal Science, Texas A&M AgriLife, College Station, Texas 77843-2471, USA

3. (ORCID: https://orcid.org/0000-0003-4191-5285 [T.M.T.])

Abstract

ABSTRACT Water use for antimicrobial intervention application for beef harvest has come under increased scrutiny in recent years in an effort to enhance water conservation during beef harvest and fabrication. We determined the efficacy of beef safety interventions for reducing surrogates of the Shiga toxin–producing Escherichia coli (STEC) on beef cuts while lowering intervention-purposed water use for a small or very small beef establishment. Beef briskets, shoulder/clods, and rounds were inoculated with a gelatin-based slurry containing 6.8 ± 0.3 log CFU/g of nonpathogenic E. coli. After 30 min of attachment, inoculated cuts were treated by conventional lactic acid spray (2.5%, 55°C), lactic acid delivered by an electrostatic spray (2.5%, 55°C) handheld wand, hot water spray (82°C), or recycled hot water spray (82°C), wherein previously applied hot water was collected, thermally pasteurized to 82°C, or left untreated. One hundred milliliters of each treatment was sprayed onto marked surfaces of inoculated cuts, after which time surviving surrogate E. coli were enumerated. Lactic acid spray and electrostatic spray treatments produced greater reductions (1.0 to 1.1 log CFU/300 cm2) than hot water interventions (0.3 to 0.5 log CFU/300 cm2) (P ≤ 0.0001). Recycling of water reduced water losses by no less than 45% on recycled hot water spray–treated beef cuts. Low water beef safety interventions offer small and very small inspected beef establishments opportunities to incrementally reduce water use during intervention application, but not necessarily without loss of pathogen reduction efficacy. HIGHLIGHTS

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3