Tidal Dissipation in Dual-body, Highly Eccentric, and Nonsynchronously Rotating Systems: Applications to Pluto–Charon and the Exoplanet TRAPPIST-1e

Author:

Renaud Joe P.ORCID,Henning Wade G.ORCID,Saxena Prabal,Neveu MarcORCID,Bagheri Amirhossein,Mandell AviORCID,Hurford Terry

Abstract

Abstract Using the Andrade-derived Sundberg–Cooper rheology, we apply several improvements to the secular tidal evolution of TRAPPIST-1e and the early history of Pluto–Charon under the simplifying assumption of homogeneous bodies. By including higher-order eccentricity terms (up to and including e 20), we find divergences from the traditionally used e 2 truncation starting around e = 0.1. Order-of-magnitude differences begin to occur for e > 0.6. Critically, higher-order eccentricity terms activate additional spin–orbit resonances. Worlds experiencing nonsynchronous rotation can fall into and out of these resonances, altering their long-term evolution. Nonzero obliquity generally does not generate significantly higher heating; however, it can considerably alter orbital and rotational evolution. Much like eccentricity, obliquity can activate new tidal modes and resonances. Tracking the dual-body dissipation within Pluto and Charon leads to faster evolution and dramatically different orbital outcomes. Based on our findings, we recommend future tidal studies on worlds with e ≥ 0.3 to take into account additional eccentricity terms beyond e 2. This threshold should be lowered to e > 0.1 if nonsynchronous rotation or nonzero obliquity is under consideration. Due to the poor convergence of the eccentricity functions, studies on worlds that may experience very high eccentricity (e ≥ 0.6) should include terms with high powers of eccentricity. We provide these equations up to e 10 for arbitrary obliquity and nonsynchronous rotation. Finally, the assumption that short-period, solid-body exoplanets with e ≳ 0.1 are tidally locked in their 1:1 spin–orbit resonance should be reconsidered. Higher-order spin–orbit resonances can exist even at these relatively modest eccentricities, while previous studies have found such resonances can significantly alter stellar-driven climate.

Funder

NASA Habitable Worlds Program

Publisher

American Astronomical Society

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3