Imaging Lunar Craters with the Lucy Long Range Reconnaissance Imager (L’LORRI): A Resolution Test for NASA's Lucy Mission

Author:

Robbins Stuart J.ORCID,Beau Bierhaus E.,Barnouin OlivierORCID,Lauer Tod R.ORCID,Spencer JohnORCID,Marchi SimoneORCID,Weaver Harold A.ORCID,Mottola StefanoORCID,Levison HalORCID,Dello Russo NeilORCID

Abstract

Abstract NASA's Lucy mission is designed to better understand the unique population of Trojan asteroids. Trojans were probably captured in Jupiter's L4 and L5 points early in the solar system's evolution and little altered since then. A critical investigation of Lucy is to use its highest-resolution camera, the Lucy Long Range Reconnaissance Imager (L’LORRI), to image Trojans’ surfaces to understand their geology and impact crater populations. Through crater statistics, the population of smaller bodies that produced those impacts, relative age differences across the bodies, and other comparative investigations between bodies can be studied. Mapping the crater population to the minimum diameters needed to achieve Lucy's objectives might require image subsampling and deconvolution (“processing”) to improve the spatial resolution, a process whereby multiple, slightly offset images are merged to create a single, better-sampled image and deconvolved with L’LORRI's point-spread function. Lucy's first Earth Gravity Assist (EGA1) provided an opportunity to test this process's accuracy using L’LORRI images of the Moon, whose crater population is well characterized and therefore provides ground-truth testing. Specifically, the lunar crater imaging by L’LORRI during EGA1 allowed us to compare crater statistics derived from raw and processed L’LORRI images with ground-truth statistics derived from higher-resolution lunar imaging from other missions. The results indicate the processing can improve impact crater statistics such that features can be identified and measured to ≈70% the diameter that they can otherwise be reliably mapped on native L’LORRI images. This test's results will be used in the observation designs for the Lucy flyby targets.

Funder

NASA ∣ SMD ∣ Planetary Science Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3