The Lucy Long Range Reconnaissance Imager (L’LORRI)

Author:

Weaver H. A.ORCID,Wilson J. P.,Conard S. J.,Adams J. D.,Begley S.,Burgum J.,Darlington E. H.,Dello Russo N.,Hacala R.,London S.,Morgan M. F.,Murphy G.,Nelson T.,Shah A.,Spencer J. R.,Taylor H.,Boehmer T.,Burke L.,Drabenstadt C.,Henry C.,Ling S.,Porter C.,Yin J.

Abstract

AbstractNASA’s Lucy mission spacecraft was launched on 16 October 2021 and will perform the initial in situ investigation of the Jovian Trojan asteroids (Levison et al. 2021, 2024). The Lucy LOng Range Reconnaissance Imager (L’LORRI) is a panchromatic visible light (420–795 nm, 50% QE points), narrow-angle (field of view = 0.29°), high spatial resolution (1.0′′ pixel−1) imager used on the Lucy mission for both science observations and optical navigation. L’LORRI is designed to provide maps of the sunlit portions of the Trojan surfaces to a resolution of ∼10 m (after deconvolution), which will enable crater counting to constrain the surface ages. L’LORRI’s high sensitivity and large dynamic range permits imaging of the low albedo Trojans at moderately large phase angles (down to I/F values of ∼0.0014 with SNR ≈ 30 using an exposure time of 100 ms), as well as providing early acquisitions of the Trojans during the approach phase, searches for Trojan activity that are ∼10× better than can be obtained from Earth, and deep searches for potential Trojan satellites down to $V \approx 20.4$ V 20.4 at spatial resolutions far surpassing that available from Earth. This paper describes the L’LORRI instrument design and the requirements that drove the design. We present results from L’LORRI’s ground calibration campaign, summarize the L’LORRI in-flight calibration plan, and describe typical L’LORRI operations scenarios during the Trojan flybys. We also present an analysis of in-flight data taken during the first year of Lucy operations, which show that most aspects of L’LORRI’s performance are nominal (i.e., as predicted), but the telescope’s point spread function is slightly degraded relative to pre-flight predictions. Nevertheless, L’LORRI is still expected to fulfill all of its scientific objectives, which should revolutionize our view of the Jovian Trojans.

Funder

Southwest Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3