Arecibo S-band Radar Characterization of Local-scale Heterogeneities within Mercury’s North Polar Deposits

Author:

Rivera-Valentín Edgard G.ORCID,Meyer Heather M.ORCID,Taylor Patrick A.ORCID,Mazarico ErwanORCID,Bhiravarasu Sriram S.ORCID,Virkki Anne K.ORCID,Nolan Michael C.ORCID,Chabot Nancy L.ORCID,Giorgini Jon D.

Abstract

Abstract Ground-based planetary radar observations first revealed deposits of potentially nearly pure water ice in some permanently shadowed regions (PSRs) on Mercury’s poles. Later, the MESSENGER spacecraft confirmed the icy nature of the deposits, as well as their location within PSRs. Considering the geologic context provided by MESSENGER, we further characterized the north polar deposits by pairing spacecraft data with new Arecibo S-band radar observations. Here we show that some ice deposits within PSRs have a gradational pattern in their radar properties that is likely associated with differences in ice purity. Radar-bright features with a circular polarization ratio μ c > 1 can be characterized by water ice with ≳3% impurities by volume while those with μ c < 1 by ≳20% impurities. Furthermore, areas in PSRs with μ c < 1 typically surround locations of stronger radar backscatter with μ c > 1. Therefore, deposits of nearly pure water ice are likely surrounded by lower-purity material, such as water-ice-rich regolith, which could be the result of impact gardening or the crater’s thermal environment. However, such deposits are not always colocated within large polar craters where ice should be the most stable, even at the surface. In fact, we found that there is no significant difference between the radar backscattering properties of deposits thought to have surficial ice and those with buried ice. Our results also help improve the identification of icy reservoirs elsewhere, such as the Moon. Indeed, we found that μ c is not an adequate diagnostic, but rather the radar backscatter in each circular polarization independently provides information to identify water-ice deposits.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3