Improved Orthorectification and Empirical Reduction of Topographic Effects in Monostatic Mini-RF S-band Observations of the Moon

Author:

Fassett Caleb I.,Bramson Ali M.ORCID,Cahill Joshua T. S.ORCID,Harris Cameron P.ORCID,Morgan Gareth A.ORCID,Neish Catherine D.ORCID,Nypaver Cole A.ORCID,Patterson G. WesleyORCID,Rivera-Valentin EdgardORCID,Taylor Patrick A.ORCID,Thomson Bradley J.ORCID,

Abstract

Abstract The Miniature Radio Frequency instrument (Mini-RF) on the Lunar Reconnaissance Orbiter obtained widespread synthetic aperture radar observations of the Moon in the S band (12.6 cm), including nearly complete coverage at both lunar poles. The currently archived monostatic data have spatial offsets from the lunar reference frame, making them more difficult to compare to other data sets. To address this issue, we have developed a new algorithm for spatially controlling the Mini-RF S-band monostatic data set and orthorectifying these data onto lunar topography. Additionally, as the influence of incidence angle changes on radar observations is well known, we describe an empirical approach to account for variations in observation geometry and surface topography. Individual radar swaths and mosaics produced using this method more clearly show the variability in scattering behavior due to changes in lunar regolith properties and suppress some of the behavior arising from these topographic effects alone. Once these terrain effects are taken into account, we find that areas of permanent shadow at both poles have a higher median radar reflectivity than nonpermanently shadowed regions, but the polarization behavior of shadowed versus unshadowed areas is largely similar. The higher radar reflectivity in permanent shadow is likely the result of physical or compositional differences in these unique environments, though the precise cause remains uncertain. The results here illustrate how reducing the influence of topography and geometry effects in Mini-RF radar data may enable better characterization of lunar geologic units, regolith structure, and potential areas hosting volatile deposits at the lunar poles.

Funder

NASA ∣ SMD ∣ Planetary Science Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3