The Use of Digital Terrain Models for Natural Feature Tracking at Asteroid Bennu

Author:

Olds R. D.,Miller C. J.,Norman C. D.,Mario C. E.,Berry K.,Palmer E.ORCID,Barnouin O. S.ORCID,Daly M. G.ORCID,Weirich J. R.ORCID,Seabrook J. A.,Bennett C. A.,Lorenz D.,Rizk B.,Bos B. J.,Lauretta D. S.ORCID

Abstract

Abstract The Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) mission rendezvoused with asteroid (101955) Bennu in 2018 with the primary objective of collecting a sample of regolith from the surface. As the first NASA asteroid sample return mission, OSIRIS-REx deployed several new technologies to achieve program objectives. Here we present an overview of Natural Feature Tracking (NFT), a system developed to autonomously guide the spacecraft to the desired sampling site using optical navigation and the natural terrain on the surface of Bennu. NFT utilized a series of image-based digital terrain models (DTMs) constructed by means of stereophotoclinometry to represent patches on the surface of the asteroid. These DTMs were used to generate synthetic renderings of the terrain and identify features for use in navigating to the sampling location. In addition, high-resolution models of the sampling site constructed from scanning lidar data were used for predicting the time and location of contact with the surface. These models went through a series of validation tests to ensure the performance of the NFT system. When the spacecraft executed the sampling trajectory in 2020 October, NFT enabled real-time guidance updates that delivered it safely to the desired sampling location while also providing critical hazard avoidance capabilities in the rocky Bennu environment.

Funder

NASA ∣ Goddard Space Flight Center

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3