(523599) 2003 RM: The Asteroid that Wanted to be a Comet

Author:

Farnocchia DavideORCID,Seligman Darryl Z.ORCID,Granvik MikaelORCID,Hainaut OlivierORCID,Meech Karen J.ORCID,Micheli MarcoORCID,Weryk RobertORCID,Chesley Steven R.ORCID,Christensen Eric J.,Koschny DetlefORCID,Kleyna Jan T.ORCID,Lazzaro DanielaORCID,Mommert MichaelORCID,Wainscoat Richard J.ORCID

Abstract

Abstract We report a statistically significant detection of nongravitational acceleration on the subkilometer near-Earth asteroid (523599) 2003 RM. Due to its orbit, 2003 RM experiences favorable observing apparitions every 5 yr. Thus, since its discovery, 2003 RM has been extensively tracked with ground-based optical facilities in 2003, 2008, 2013, and 2018. We find that the observed plane-of-sky positions cannot be explained with a purely gravity-driven trajectory. Including a transverse nongravitational acceleration allows us to match all observational data, but its magnitude is inconsistent with perturbations typical of asteroids such as the Yarkovsky effect or solar radiation pressure. After ruling out that the orbital deviations are due to a close approach or collision with another asteroid, we hypothesize that this anomalous acceleration is caused by unseen cometary outgassing. A detailed search for evidence of cometary activity with archival and deep observations from the Panoramic Survey Telescope and Rapid Response System and the Very Large Telescope does not reveal any detectable dust production. However, the best-fitting H2O sublimation model allows for brightening due to activity consistent with the scatter of the data. We estimate the production rate required for H2O outgassing to power the acceleration and find that, assuming a diameter of 300 m, 2003 RM would require Q(H2O) ∼ 1023 molec s−1 at perihelion. We investigate the recent dynamical history of 2003 RM and find that the object most likely originated in the mid-to-outer main belt (∼86% probability) as opposed to from the Jupiter-family comet region (∼11% probability). Further observations, especially in the infrared, could shed light on the nature of this anomalous acceleration.

Funder

National Aeronautics and Space Administration

National Science Foundation

NASA ∣ Goddard Space Flight Center

European Southern Observatory

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3