Turbulent Dust-trapping Rings as Efficient Sites for Planetesimal Formation

Author:

Xu ZiyanORCID,Bai Xue-NingORCID

Abstract

Abstract Recent observations of protoplanetary disks (PPDs) at submillimeter wavelengths have revealed the ubiquity of annular substructures that are indicative of pebble-sized dust particles trapped in turbulent ringlike gas pressure bumps. This major paradigm shift also challenges the leading theory of planetesimal formation from such pebbles by means of the streaming instability, which operates in a pressure gradient and can be suppressed by turbulence. Here, we conduct 3D local shearing box nonideal magnetohydrodynamic simulations of dust trapping in enforced gas pressure bumps, including dust backreaction. Under a moderate level of turbulence generated by the magnetorotational instability with ambipolar diffusion, which is suitable for outer disk conditions, we achieve quasi-steady states of dust trapping balanced by turbulent diffusion. We find strong dust clumping in all simulations near the gas pressure maxima, reaching a maximum density well above the threshold for triggering gravitational collapse to form planetesimals. A strong pressure bump concentrates dust particles toward the bump’s center. With a weak pressure bump, dust can also concentrate in secondary filaments off the bump’s center, due to dust backreaction, but strong clumping still occurs mainly in the primary ring around the bump’s center. Our results reveal dust-trapping rings to be robust locations for planetesimal formation in outer PPDs, while they may possess diverse observational properties.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3