Using Anisotropies as a Forensic Tool for Decoding Supernova Remnants

Author:

Polin AbigailORCID,Duffell PaulORCID,Milisavljevic DanORCID

Abstract

Abstract We present a method for analyzing supernova remnants (SNRs) by diagnosing the drivers responsible for structure at different angular scales. First, we perform a suite of hydrodynamic models of the Rayleigh–Taylor instability (RTI) as a supernova (SN) collides with its surrounding medium. Using these models we demonstrate how power spectral analysis can be used to attribute which scales in an SNR are driven by RTI and which must be caused by intrinsic asymmetries in the initial explosion. We predict the power spectrum of turbulence driven by RTI and identify a dominant angular mode that represents the largest scale that efficiently grows via RTI. We find that this dominant mode relates to the density scale height in the ejecta, and therefore reveals the density profile of the SN ejecta. If there is significant structure in an SNR on angular scales larger than this mode, then it is likely caused by anisotropies in the explosion. Structure on angular scales smaller than the dominant mode exhibits a steep scaling with wavenumber, possibly too steep to be consistent with a turbulent cascade, and therefore might be determined by the saturation of RTI at different length scales (although systematic 3D studies are needed to investigate this). We also demonstrate, consistent with previous studies, that this power spectrum is independent of the magnitude and length scales of perturbations in the surrounding medium and therefore this diagnostic is unaffected by “clumpiness” in the circumstellar medium.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3