Detection of Frequency-dependent Dispersion Measure toward the Millisecond Pulsar J2241–5236 from Contemporaneous Wideband Observations

Author:

Kaur DilpreetORCID,Ramesh Bhat N. D.ORCID,Dai ShiORCID,McSweeney Samuel J.ORCID,Shannon Ryan M.ORCID,Kudale SanjayORCID,van Straten WillemORCID

Abstract

Abstract Making precise measurements of pulsar dispersion measures (DMs) and applying suitable corrections for them is among the major challenges in high-precision timing programs such as pulsar timing arrays (PTAs). While the advent of wideband pulsar instrumentation can enable more precise DM measurements and thence improved timing precision, it also necessitates doing careful assessments of frequency-dependent (chromatic) DMs that were theorized by Cordes et al (2016). Here we report the detection of such an effect in broadband observations of the millisecond pulsar PSR J2241−5236, a high-priority target for current and future PTAs. The observations were made contemporaneously using the wideband receivers and capabilities now available at the Murchison Widefield Array, the upgraded Giant Metrewave Radio Telescope, and the Parkes telescopes, thus providing an unprecedentedly large frequency coverage from 80 MHz to 4 GHz. Our analysis shows the measurable changes in DM that scale with the observing frequency (ν) as δDM ∝ ν 2.5±0.1. We discuss the potential implications of such a frequency dependence in the measured DMs and the likely impact on the timing noise budget and comment on the usefulness of low-frequency observations in advancing PTA efforts.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wide-band Timing of the Parkes Pulsar Timing Array UWL Data;The Astrophysical Journal;2023-02-01

2. The Southern-sky MWA Rapid Two-metre (SMART) pulsar survey—I. Survey design and processing pipeline;Publications of the Astronomical Society of Australia;2023

3. The Indian Pulsar Timing Array: First data release;Publications of the Astronomical Society of Australia;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3