Abstract
Abstract
In 2018 an ultra–wide-bandwidth low-frequency (UWL) receiver was installed on the 64 m Parkes Radio Telescope, enabling observations with an instantaneous frequency coverage from 704 to 4032 MHz. Here we present the analysis of a 3 yr data set of 35 ms pulsars observed with the UWL by the Parkes Pulsar Timing Array, using wide-band timing methods. The two key differences compared to typical narrowband methods are (1) generation of two-dimensional templates accounting for pulse shape evolution with frequency and (2) simultaneous measurements of the pulse time of arrival (TOA) and dispersion measure (DM). This is the first time that wide-band timing has been applied to a uniform data set collected with a single large fractional bandwidth receiver, for which such techniques were originally developed. As a result of our study, we present a set of profile evolution models and new timing solutions, including initial noise analysis. Precision of our TOA and DM measurements is in the range of 0.005–2.08 μs and (0.043–14.24) × 10−4 cm−3 pc, respectively, with 94% of the pulsars achieving a median TOA uncertainty of less than 1 μs.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献