Implications of Jupiter Inward Gas-driven Migration for the Inner Solar System

Author:

Deienno RogerioORCID,Izidoro AndréORCID,Morbidelli Alessandro,Nesvorný DavidORCID,Bottke William F.ORCID

Abstract

Abstract The migration history of Jupiter in the Sun’s natal disk remains poorly constrained. Here we consider how Jupiter’s migration affects small-body reservoirs and how this constrains its original orbital distance from the Sun. We study the implications of large-scale and inward radial migration of Jupiter for the inner solar system while considering the effects of collisional evolution of planetesimals. We use analytical prescriptions to simulate the growth and migration of Jupiter in the gas disk. We assume the existence of a planetesimal disk inside Jupiter’s initial orbit. This planetesimal disk received an initial total mass and size–frequency distribution (SFD). Planetesimals feel the effects of aerodynamic gas drag and collide with one another, mostly while shepherded by the migrating Jupiter. Our main goal is to measure the amount of mass in planetesimals implanted into the main asteroid belt (MAB) and the SFD of the implanted population. We also monitor the amount of dust produced during planetesimal collisions. We find that the SFD of the planetesimal population implanted into the MAB tends to resemble that of the original planetesimal population interior to Jupiter. We also find that unless very little or no mass existed between 5 au and Jupiter’s original orbit, it would be difficult to reconcile the current low mass of the MAB with the possibility that Jupiter migrated from distances beyond 15 au. This is because the fraction of the original disk mass that gets implanted into the MAB is very large. Finally, we discuss the implications of our results in terms of dust production to the so-called NC–CC isotopic dichotomy.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3