JWST Observations of K2-18b Can Be Explained by a Gas-rich Mini-Neptune with No Habitable Surface

Author:

Wogan Nicholas F.ORCID,Batalha Natasha E.ORCID,Zahnle Kevin J.,Krissansen-Totton Joshua,Tsai Shang-Min,Hu RenyuORCID

Abstract

Abstract The James Webb Space Telescope (JWST) recently measured the transmission spectrum of K2-18b, a habitable-zone sub-Neptune exoplanet, detecting CH4 and CO2 in its atmosphere. The discovery paper argued the data are best explained by a habitable “Hycean” world, consisting of a relatively thin H2-dominated atmosphere overlying a liquid water ocean. Here, we use photochemical and climate models to simulate K2-18b as both a Hycean planet and a gas-rich mini-Neptune with no defined surface. We find that a lifeless Hycean world is hard to reconcile with the JWST observations because photochemistry only supports <1 part-per-million CH4 in such an atmosphere while the data suggest about ∼1% of the gas is present. Sustaining percent-level CH4 on a Hycean K2-18b may require the presence of a methane-producing biosphere, similar to microbial life on Earth ∼3 billion years ago. On the other hand, we predict that a gas-rich mini-Neptune with 100× solar metallicity should have 4% CH4 and nearly 0.1% CO2, which are compatible with the JWST data. The CH4 and CO2 are produced thermochemically in the deep atmosphere and mixed upward to the low pressures sensitive to transmission spectroscopy. The model predicts H2O, NH3, and CO abundances broadly consistent with the nondetections. Given the additional obstacles to maintaining a stable temperate climate on Hycean worlds due to H2 escape and potential supercriticality at depth, we favor the mini-Neptune interpretation because of its relative simplicity and because it does not need a biosphere or other unknown source of methane to explain the data.

Funder

NASA ∣ NASA Astrobiology Institute

NASA Exoplanet Science Institute

Publisher

American Astronomical Society

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3