Return of 4U 1730–22 after 49 yr Silence: The Outburst Properties Observed by NICER and Insight-HXMT

Author:

Chen Yu-PengORCID,Zhang Shu,Zhang Shuang-NanORCID,Ji LongORCID,Wang Peng-JuORCID,Kong Ling-DaORCID,Chang ZhiORCID,Peng Jing-QiangORCID,Shui Qing-CangORCID,Li JianORCID,Tao LianORCID,Ge Ming-YuORCID,Qu Jin-LuORCID

Abstract

Abstract After 49 yr of quiescence, 4U 1730–22 became active and had two outbursts in 2021 and 2022; the onset and tail of the outbursts were observed by NICER, which give us a peerless opportunity to study the state transition and its underlying mechanism. In this work, we take both the neutron star (NS) surface and accretion disk emission as the seed photons of the Comptonization and derive their spectral evolution in a bolometric luminosity range of 1%–15% L Edd. In the high/soft state, the inferred inner disk radius and the NS radius are well consistent, which implies that the accretion disk is close to the NS surface. For the decay stage, we report a steep change of the accretion disk emission within 1 day, i.e., the soft-to-hard transition, which could be due to the propeller effect, and the corresponding NS surface magnetic field is 1.8–2.2 × 108 G. Moreover, the inner disk radius is truncated at the corotation radius, which is similar to the propeller effect detected from 4U 1608–52. The absence of the propeller effect in the hard-to-soft state transition implies that the transition between the magnetospheric accretion and the disk accretion is not the sole cause of the state transitions.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The double-peaked type I X-ray bursts with different mass accretion rate and fuel composition;Monthly Notices of the Royal Astronomical Society;2024-03-09

2. Insight-HXMT Research Progress Since 2023;Chinese Journal of Space Science;2024

3. On the hysteresis effect in transitions between accretion and propeller regimes;Monthly Notices of the Royal Astronomical Society;2023-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3