Magnetospheric radius of an inclined rotator in the magnetically threaded disk model

Author:

Bozzo E.,Ascenzi S.,Ducci L.,Papitto A.,Burderi L.,Stella L.

Abstract

The estimate of the magnetospheric radius in a disk-fed neutron star X-ray binary is a long standing problem in high energy astrophysics. We have reviewed the magnetospheric radius calculations in the so-called magnetically threaded disk model, comparing the simplified approach originally proposed by Ghosh & Lamb (1979, ApJ, 232, 259) with the revised version proposed by Wang (1987, A&A, 183, 257), Wang (1995, ApJ, 449, L153), and Wang (1997, ApJ, 475, L135). We show that for a given set of fixed parameters (assuming also a comparable screening factor of the neutron star magnetic field by the currents induced on the disk surface) the revised magnetically threaded disk model predicts a magnetospheric radius that is significantly smaller than that derived from the Ghosh & Lamb (1979) treatment. For a fixed value of the neutron star magnetic field and a wide range of mass accretion rates, the inclusion of a large inclination angle between the neutron star rotation and magnetic field axes (χ ≳ 60 deg) leads to a further decrease of the magnetospheric radius. To illustrate the relevance of these calculations, we consider, as an example, the case of the transitional pulsars. During the so-called high mode of their sub-luminous accretion disk state, these sources have shown X-ray pulsations interpreted as due to accretion at an unprecedented low luminosity level compared to other neutron stars in X-ray binaries. In the context of the magnetic threaded disk model, we show that accretion at luminosities of ∼1033 erg s−1 (and thus accretion-driven X-ray pulsations) can be more easily explained when the prescription of the magnetospheric radius provided by Wang (1997) is used. This avoids the need to invoke very strong propeller outflows in the transitional pulsars, as proposed in other literature works.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference53 articles.

1. Is GX5 – 1 a millisecond pulsar?

2. A Radio Pulsar/X-ray Binary Link

3. Archibald A. M., Kaspi V. M., Hessels J. W. T., et al. 2013, ArXiv e-prints [arXiv:1311.5161]

4. ACCRETION-POWERED PULSATIONS IN AN APPARENTLY QUIESCENT NEUTRON STAR BINARY

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3