Plasma Heating and Nanoflare Caused by Slow-mode Wave in a Coronal Loop

Author:

Xia FanxiaoyuORCID,Wang TongjiangORCID,Su YangORCID,Zhao JieORCID,Zhang QingminORCID,Veronig Astrid M.ORCID,Gan WeiqunORCID

Abstract

Abstract We present a detailed analysis of a reflecting intensity perturbation in a large coronal loop that appeared as a sloshing oscillation and lasted for at least one and a half periods. The perturbation is initiated by a microflare at one footpoint of the loop, propagates along the loop, and is eventually reflected at the remote footpoint where significant brightenings are observed in all of the Atmospheric Imaging Assembly extreme-ultraviolet channels. This unique observation provides us with the opportunity to better understand not only the thermal properties and damping mechanisms of the sloshing oscillation but also the energy transfer at the remote footpoint. Based on differential emission measures analysis and the technique of coronal seismology, we find that (1) the calculated local sound speed is consistent with the observed propagation speed of the perturbation during the oscillation, which is suggestive of a slow magnetoacoustic wave; (2) thermal conduction is the major damping mechanism of the wave but an additional damping mechanism such as anomalous enhancement of compressive viscosity or wave leakage is also required to account for the rapid decay of the observed waves; (3) the wave produced a nanoflare at the remote footpoint, with a peak thermal energy of ∼1024–1025 erg. This work provides a consistent picture of the magnetoacoustic wave propagation and reflection in a coronal loop, and reports the first solid evidence of a wave-induced nanoflare. The results reveal new clues for further simulation studies and may help with solving the coronal heating problem.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3