Magnetohydrodynamic Mode Conversion in the Solar Corona: Insights from Fresnel-like Models of Waves at Sharp Interfaces

Author:

Cranmer Steven R.ORCID,Molnar Momchil E.ORCID

Abstract

Abstract The solar atmosphere is known to contain many different types of wave-like oscillation. Waves and other fluctuations (e.g., turbulent eddies) are believed to be responsible for at least some of the energy transport and dissipation that heats the corona and accelerates the solar wind. Thus, it is important to understand the behavior of magnetohydrodynamic (MHD) waves as they propagate and evolve in different regions of the Sun’s atmosphere. In this paper, we investigate how MHD waves can affect the overall plasma state when they reflect and refract at sharp, planar interfaces in density. First, we correct an error in a foundational paper (Stein) that affects the calculation of wave energy-flux conservation. Second, we apply this model to reflection-driven MHD turbulence in the solar wind, where the presence of density fluctuations can enhance the generation of inward-propagating Alfvén waves. This model reproduces the time-averaged Elsässer imbalance fraction (i.e., the ratio of inward to outward Alfvénic power) from several published numerical simulations. Lastly, we model how the complex magnetic field threading the transition region (TR) between the chromosphere and corona helps convert a fraction of upward-propagating Alfvén waves into fast-mode and slow-mode MHD waves. These magnetosonic waves dissipate in a narrow region around the TR and produce a sharp peak in the heating rate. This newly found source of heating sometimes exceeds the expected heating rate from Alfvénic turbulence by an order of magnitude. It may explain why some earlier models seemed to require an additional ad hoc heat source at this location.

Funder

NASA

George Ellery Hale Graduate Student Fellowship

NSF

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3