The Mass–Metallicity Relation of Dwarf Galaxies at Cosmic Noon from JWST Observations

Author:

Li 李 Mingyu 明宇ORCID,Cai ZhengORCID,Bian FuyanORCID,Lin XiaojingORCID,Li ZihaoORCID,Wu YunjingORCID,Sun FengwuORCID,Zhang ShiwuORCID,Golden-Marx EmmetORCID,Sun ZechangORCID,Zou SiweiORCID,Fan XiaohuiORCID,Egami EiichiORCID,Charlot StephaneORCID,Bruzual GustavoORCID,Chevallard JacopoORCID

Abstract

Abstract We present a study of the mass–metallicity relation (MZR) of 51 dwarf galaxies (M ≈ 106.5–109.5 M ) at z = 2–3 from the A2744 and SMACS J0723-3732 galaxy cluster fields. These dwarf galaxies are identified and confirmed by deep JWST/NIRISS imaging and slitless grism spectroscopic observations. By taking advantage of the superior performance of JWST and the gravitational lensing effect, we extend the previous MZR relation at z = 2–3 to a much lower-mass regime down by ≈2.5 orders of magnitude as compared with previous studies. We find that the MZR has a shallower slope at the low-mass end (M < 109 M ), with a slope turnover point of ≈109 M . This implies that the dominating feedback processes in dwarf galaxies may be different from that in massive galaxies. From z = 3, to z = 2, the metallicity of the dwarf galaxies is enhanced by ≈0.09 dex for a given stellar mass, consistent with the mild evolution found in galaxies with higher mass. Furthermore, we confirm the existence of a fundamental metallicity relation (FMR) between the gas-phase metallicity, stellar mass, and star formation rate in dwarf galaxies at z = 2–3. Our derived FMR, which has no significant redshift evolution, can be used as a benchmark to understand the origin of the anticorrelation between the star formation rate and metallicity of dwarf galaxies in the high-z Universe.

Funder

MOST ∣ National Key Research and Development Program of China

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3