Abstract
Abstract
Various white-dwarf (WD) binary scenarios have been proposed trying to understand the nature and the diversity of type Ia supernovae (SNe Ia). In this work, we study the evolution of carbon–oxygen WD—red giant (RG) binaries (including the role of magnetic confinement) as possible SN Ia progenitors (the so-called symbiotic progenitor channel). Using the mesa stellar evolution code, we calculate the time dependence of the structure of the RG star, the wind mass loss, the Roche lobe-overflow mass-transfer rate, the polar mass-accretion rate (in the case of magnetic confinement), and the orbital and angular-momentum evolution. We consider cases where the WD is nonmagnetic and cases where the magnetic field is strong enough to force accretion onto the two small polar caps of the WD. Confined accretion onto a small area allows for more efficient hydrogen burning, potentially suppressing nova outbursts. This makes it easier for the WD to grow in mass toward the Chandrasekhar-mass limit and explode as a SN Ia. With magnetic confinement, the initial parameter space of the symbiotic channel for SNe Ia is shifted toward shorter orbital periods and lower donor masses compared to the case without magnetic confinement. Searches for low-mass He WDs or relatively low-mass giants with partially stripped envelopes that survived the supernova explosion and are found in SN remnants will provide crucial insights for our understanding of the contribution of this symbiotic channel.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献