A promising formation channel for symbiotic X-ray binaries: cases of IGR J17329−2731 and 4U 1700+24

Author:

Ablimit Iminhaji12ORCID

Affiliation:

1. Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences , Beijing 100012, China

2. Department of Astronomy, Kyoto University , Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

Abstract

ABSTRACT Recent observations demonstrate that the symbiotic X-ray binary (SyXB) IGR J17329−2731 contains a highly magnetized neutron star (NS), which accretes matter through the wind from its giant star companion, and suggest that 4U 1700+24 may also have a highly magnetized NS. Accretion-induced collapse (AIC) from oxygen–neon–magnesium white dwarf (ONeMg WD) + red giant (RG) star binaries is one promising channel to form these SyXBs, while other long standing formation channels have difficulties to produce these SyXBs. By considering non-magnetic and magnetic ONeMg WDs, I investigate the evolution of ONeMg WD + RG binaries with the mesa stellar evolution code for producing SyXBs with non-magnetic or magnetized NSs. In the pre-AIC evolution with magnetic confinement, the mass accumulation efficiency of the accreting WD is increased at low-mass transfer rate compared with the non-magnetic case. The newborn NSs formed via AIC of highly magnetized WDs could inherit the large magnetic field through conservation of magnetic flux, and the systems could have a long age compatible with that of the red giant companions. These young and highly magnetized NSs could accrete matters from the stellar wind of the giant companions to that shine as those observed SyXBs, and could preserve their high magnetic field during this time. The mesa calculation results show that the initial parameter (initial RG mass and orbital period) space for the AIC with magnetic confinement to form SyXBs with highly magnetized NSs shifts to be lower and narrower compared with that of the no magnetic confinement case.

Funder

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3