Abstract
Abstract
Likelihood analysis is typically limited to normally distributed noise due to the difficulty of determining the probability density function of complex, high-dimensional, non-Gaussian, and anisotropic noise. This is a major limitation for precision measurements in many domains of science, including astrophysics, for example, for the analysis of the cosmic microwave background, gravitational waves, gravitational lensing, and exoplanets. This work presents Score-based LIkelihood Characterization, a framework that resolves this issue by building a data-driven noise model using a set of noise realizations from observations. We show that the approach produces unbiased and precise likelihoods even in the presence of highly non-Gaussian correlated and spatially varying noise. We use diffusion generative models to estimate the gradient of the probability density of noise with respect to data elements. In combination with the Jacobian of the physical model of the signal, we use Langevin sampling to produce independent samples from the unbiased likelihood. We demonstrate the effectiveness of the method using real data from the Hubble Space Telescope and James Webb Space Telescope.
Funder
Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada
FRQ ∣ Fonds de recherche du Québec – Nature et technologies
Simons Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献